Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis.
نویسندگان
چکیده
Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1.
منابع مشابه
The ability of primary auditory cortical ( A 1 ) neurons to detect amplitude modulation with 1 rate and temporal codes : neurometric analysis
12 Amplitude modulation (AM) is a common feature of natural sounds, and its detection is 13 biologically important. Even though most sounds are not fully modulated, the majority of 14 physiological studies have focused on fully modulated (100% modulation depth) sounds. We 15 presented AM noise at a range of modulation depths to awake macaque monkeys while recording 16 from neurons in primary au...
متن کاملLinking Cortical Spike Pattern Codes to Auditory Perception
Abstract Neurometric analysis has proven to be a powerful tool for studying links between neural activity and perception, especially in visual and somatosensory cortices, but conventional neurometrics are based on a simplistic rate-coding hypothesis that is clearly at odds with the rich and complex temporal spiking patterns evoked by many natural stimuli. In this study, we investigated the poss...
متن کاملStimulus Phase Locking of Cortical Oscillation for Auditory Stream Segregation in Rats
The phase of cortical oscillations contains rich information and is valuable for encoding sound stimuli. Here we hypothesized that oscillatory phase modulation, instead of amplitude modulation, is a neural correlate of auditory streaming. Our behavioral evaluation provided compelling evidences for the first time that rats are able to organize auditory stream. Local field potentials (LFPs) were ...
متن کاملActive engagement improves primary auditory cortical neurons' ability to discriminate temporal modulation.
The effect of attention on single neuron responses in the auditory system is unresolved. We found that when monkeys discriminated temporally amplitude modulated (AM) from unmodulated sounds, primary auditory cortical (A1) neurons better discriminated those sounds than when the monkeys were not discriminating them. This was observed for both average firing rate and vector strength (VS), a measur...
متن کاملCoding of amplitude modulation in primary auditory cortex.
Conflicting results have led to different views about how temporal modulation is encoded in primary auditory cortex (A1). Some studies find a substantial population of neurons that change firing rate without synchronizing to temporal modulation, whereas other studies fail to see these nonsynchronized neurons. As a result, the role and scope of synchronized temporal and nonsynchronized rate code...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 107 12 شماره
صفحات -
تاریخ انتشار 2012